Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Automated Counting and Tracking of Vehicles

    https://doi.org/10.1142/S0218001417500380Cited by:9 (Source: Crossref)

    A robust traffic surveillance system is crucial in improving the control and management of traffic systems. Vehicle flow processing primarily involves counting and tracking vehicles; however, due to complex situations such as brightness changes and vehicle partial occlusions, traditional image segmentation methods are unable to segment and count vehicles correctly. This paper presents a novel framework for vision-based vehicle counting and tracking, which consists of four main procedures: foreground detection, feature extraction, feature analysis, and vehicles counting/tracking. Foreground detection intends to generate regions of interest in an image, which are used to produce significant feature points. Vehicles counting and tracking are achieved by analyzing clusters of feature points. As for testing on recorded traffic videos, the proposed framework is verified to be able to separate occluded vehicles and count the number of vehicles accurately and efficiently. By comparing with other methods, we observe that the proposed framework achieves the highest occlusion segment rate and the counting accuracy.