World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Multi-State Self-Learning Template Library Updating Approach for Multi-Camera Human Tracking in Complex Scenes

    https://doi.org/10.1142/S0218001417550163Cited by:3 (Source: Crossref)

    In multi-camera video tracking, the tracking scene and tracking-target appearance can become complex, and current tracking methods use entirely different databases and evaluation criteria. Herein, for the first time to our knowledge, we present a universally applicable template library updating approach for multi-camera human tracking called multi-state self-learning template library updating (RS-TLU), which can be applied in different multi-camera tracking algorithms. In RS-TLU, self-learning divides tracking results into three states, namely steady state, gradually changing state, and suddenly changing state, by using the similarity of objects with historical templates and instantaneous templates because every state requires a different decision strategy. Subsequently, the tracking results for each state are judged and learned with motion and occlusion information. Finally, the correct template is chosen in the robust template library. We investigate the effectiveness of the proposed method using three databases and 42 test videos, and calculate the number of false positives, false matches, and missing tracking targets. Experimental results demonstrate that, in comparison with the state-of-the-art algorithms for 15 complex scenes, our RS-TLU approach effectively improves the number of correct target templates and reduces the number of similar templates and error templates in the template library.