World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on The Mexican Conference on Pattern Recognition; Guest Editors: José Fco. Martínez-Trinidad (National Institute of Astrophysics, Optics and Electronics, Mexico), Jesús Ariel Carrasco-Ochoa (National Institute of Astrophysics, Optics and Electronics, Mexico), Víctor Ayala-Ramírez (University of Guanajuato, Mexico) and José Arturo Olvera-López (Autonomous University of Puebla (BUAP), Mexico)No Access

Plagiarism Detection with Genetic-Based Parameter Tuning

    https://doi.org/10.1142/S0218001418600066Cited by:2 (Source: Crossref)

    A crucial step in plagiarism detection is text alignment. This task consists in finding similar text fragments between two given documents. We introduce an optimization methodology based on genetic algorithms to improve the performance of a plagiarism detection model by optimizing its input parameters. The implementation of the genetic algorithm is based on nonbinary representation of individuals, elitism selection, uniform crossover, and high mutation rate. The obtained parameter settings allow the plagiarism detection model to achieve better results than the state-of-the-art approaches.