World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on The Mexican Conference on Pattern Recognition; Guest Editors: José Fco. Martínez-Trinidad (National Institute of Astrophysics, Optics and Electronics, Mexico), Jesús Ariel Carrasco-Ochoa (National Institute of Astrophysics, Optics and Electronics, Mexico), Víctor Ayala-Ramírez (University of Guanajuato, Mexico) and José Arturo Olvera-López (Autonomous University of Puebla (BUAP), Mexico)No Access

LSTM Deep Neural Networks Postfiltering for Enhancing Synthetic Voices

    https://doi.org/10.1142/S021800141860008XCited by:13 (Source: Crossref)

    Recent developments in speech synthesis have produced systems capable of producing speech which closely resembles natural speech, and researchers now strive to create models that more accurately mimic human voices. One such development is the incorporation of multiple linguistic styles in various languages and accents. Speech synthesis based on Hidden Markov Models (HMM) is of great interest to researchers, due to its ability to produce sophisticated features with a small footprint. Despite some progress, its quality has not yet reached the level of the current predominant unit-selection approaches, which select and concatenate recordings of real speech, and work has been conducted to try to improve HMM-based systems. In this paper, we present an application of long short-term memory (LSTM) deep neural networks as a postfiltering step in HMM-based speech synthesis. Our motivation stems from a similar desire to obtain characteristics which are closer to those of natural speech. The paper analyzes four types of postfilters obtained using five voices, which range from a single postfilter to enhance all the parameters, to a multi-stream proposal which separately enhances groups of parameters. The different proposals are evaluated using three objective measures and are statistically compared to determine any significance between them. The results described in the paper indicate that HMM-based voices can be enhanced using this approach, specially for the multi-stream postfilters on the considered objective measures.