Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Semi-Automatic Extraction and Mapping of Farmlands Based on High-Resolution Remote Sensing Images

    https://doi.org/10.1142/S0218001422540027Cited by:4 (Source: Crossref)

    Extraction of agricultural parcels from high-resolution satellite imagery is an important task in precision agriculture. Here, we present a semi-automatic approach for agricultural parcel detection that achieves high accuracy and efficiency. Unlike the techniques presented in previous literatures, this method is pixel based, and it exploits the properties of a spectral angle mapper (SAM) to develop customized operators to accurately derive the parcels. The main steps of the method are sample selection, textural analysis, spectral homogenization, SAM, thresholding, and region growth. We have systematically evaluated the algorithm proposed on a variety of images from Gaofen-1 wide field of view (GF-1 WFV), Resource 1-02C (ZY1-02C), and Gaofen-2 (GF-2) to aerial image; the accuracies are 99.09% of GF-1 WFV, 84.42% of ZY1-02C, 96.51% and 92.18% of GF-2, and close to 100% of aerial image; these results demonstrated its accuracy and robustness.