World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Novel Nanometric Reversible Low Power Bidirectional Universal Logarithmic Barrel Shifter with Overflow and Zero Flags

    https://doi.org/10.1142/S0218126615500498Cited by:4 (Source: Crossref)

    One of the most important issues in designing VLSI circuits is power consumption. Reversible logic which is widely utilized in quantum computing, low power CMOS design, optical information processing, bioinformatics and nanotechnology-based systems decreases power loss. A reversible circuit has zero internal power dissipation because it does not lose information. Reversible barrel shifters are required to construct reversible embedded digital signal and general-purpose processors. Data shifting is often used in high-speed/low-power error-control applications, floating point normalization, address decoding and bit indexing. This paper proposes a novel reversible bidirectional universal barrel shifter which is applied in high speed and high performance applications. The proposed barrel shifter is designed in a single circuit with overflow and zero flags. It performs three operations consisting of rotating, logical and arithmetic shifting that transfers and shifts data in both directions. The design is evaluated and formulated in terms of number of garbage outputs, number of constant inputs, quantum cost, number of reversible gates and hardware complexity. All the scales are in nanometric area.

    This paper was recommended by Regional Editor Emre Salman.