Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Investigation of Switching Sequences on a Generalized SVPWM Algorithm for Multilevel Inverters

    https://doi.org/10.1142/S0218126619500361Cited by:25 (Source: Crossref)

    This paper investigates the various switching sequences on a generalized 60 distributed coordinate system-based space vector pulse width modulation (SVPWM) algorithm for multilevel inverters. The main focus of this work is to improve the inverter output voltage profile by taking advantage of the redundancy inverter switching states. With the help of SVPWM algorithm, the three nearest vectors have to find out the synthesis of the Vref location and then by applying the various optimum switching sequences, the inverter produces less harmonic content in the output voltage compared to the conventional switching sequence. All the switching sequence designs are developed with the help of minimum change detector (MCD) by using switching redundancies in order to reduce inverter switching loss. Simulation results to analyze various sequences on the general SVPWM algorithm are presented in the seven-level cascaded H-bridge (CHB) inverter. To validate the results, hardware results are presented on the seven-level CHB inverter.

    This paper was recommended by Regional Editor Piero Malcovati.