BI-SPIRALING HOMOCLINIC CURVES AROUND A T-POINT IN CHUA'S EQUATION
Abstract
In this work, the existence of curves of homoclinic connections that bi-spiral around a T-point between two saddle-focus equilibria is detected in Chua's equation. That is, the homoclinic curve emerges spiraling from a T-point in a parameter bifurcation plane and ends, by a different spiral, at the same T-point. This new phenomenon is related to the existence of more than one intersection between the two-dimensional manifolds of the involved equilibria at the T-point.