World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXISTENCE OF MONOTONIC TRAVELING WAVES IN LATTICE DYNAMICAL SYSTEMS

    https://doi.org/10.1142/S021812740501337XCited by:5 (Source: Crossref)

    This paper deals with the existence of monotonic traveling and standing wave solutions for a certain class of lattice differential equations. Employing the techniques of monotone iteration coupled with the concept of upper and lower solutions in the theory of monotone dynamical systems, we can classify the monotonic traveling wave solutions with various asymptotic boundary conditions. For the case of zero wave speed, a novel discrete monotone iteration scheme is established for proving the existence of monotonic standing wave solutions. Applications are made to several models including cellular neural networks, original and modified RTD-based cellular neural networks. Numerical simulations of the monotone iteration schemes are also given.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos