World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ROBUST SYNCHRONIZATION OF CHAOTIC LUR'E SYSTEMS VIA REPLACING VARIABLES CONTROL

    https://doi.org/10.1142/S0218127406016914Cited by:13 (Source: Crossref)

    The sufficient conditions for chaos synchronization of two nonidentical systems by replacing variables control have not been proposed until now. In this paper, synchronization of two chaotic Lur'e systems with parameter mismatch by replacing variables control is studied. First of all, we present a master-slave Lur'e systems synchronization scheme with both parameter mismatch and replacing variables control, and derive a responsive error system for the scheme. A new definition of synchronization with finite L2-gain is then introduced. Based on the definition, the sufficient synchronization criteria which are in the form of linear matrix inequality (LMI) are proved using a quadratic Lyapunov function. By means of MKY lemma the frequency domain criteria are further derived from the obtained LMIs. These frequency domain criteria are illustrated on the master-slave Chua's circuits with parameter mismatch so that the ranges of the parameters of Chua's circuit are analytically solved in the sense of the synchronization with finite L2-gain by replacing singe-variable control. The illustrative examples verify that within the ranges of the parameters it is possible to synchronize the master-slave Chua's circuits up to a small synchronization error bound, even the qualitative behaviors of the slave circuit are different from that of the master one, such as the trajectory of the master circuit is chaotic and that of the slave divergent. The relation between the synchronization error bound and parameter mismatch is shown.