World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMICS OF SEIS EPIDEMIC MODELS WITH VARYING POPULATION SIZE

    https://doi.org/10.1142/S0218127407017902Cited by:10 (Source: Crossref)

    In this paper, SEIS epidemic models with varying population size are considered. Firstly, we consider the case when births of population are throughout the year. A threshold σ is identified, which determines the outcome of disease, that is, when σ < 1, the disease dies out; whereas when σ > 1, the disease persists and the unique endemic equilibrium is globally asymptotically stable; when σ = 1, bifurcation occurs and leads to "the change of stability". Two other thresholds σ′ and are also identified, which determine the dynamics of epidemic model with varying population size, when the disease dies out or it is endemic. Secondly, we consider the other case, birth pulse. The population density is increased by an amount B(N)N at the discrete time nτ, where n is any non-negative integer and τ is a positive constant, B(N) is density-dependent birth rate. By applying the corresponding stroboscopic map, we obtain the existence of infection-free periodic solution with period τ. Lastly, through numerical simulations, we show the dynamic complexities of SEIS epidemic models with varying population size, there is a sequence of bifurcations, leading to chaotic strange attractors. Non-unique attractors also appear, which implies that the dynamics of SEIS epidemic models with varying population size can be very complex.

    This work is supported by National Natural Science Foundation of China (10526015, 10371040), Science Foundation of Guangxi (0640011) and Scientific Research Foundation of Guangxi Education Office (600022).