World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BOUNDING A DOMAIN THAT CONTAINS ALL COMPACT INVARIANT SETS OF THE BLOCH SYSTEM

    https://doi.org/10.1142/S0218127409023457Cited by:6 (Source: Crossref)

    In this paper we consider the localization problem of compact invariant sets of the Bloch system describing dynamics of an ensemble of spins in an external magnetic field. Our main results are related to finding a domain containing all compact invariant sets of the Bloch system. This domain is described as an intersection of one-parameter set of balls with two half spaces. Further, we describe the location of periodic orbits respecting two circular paraboloids and one semipermeable plane. In addition, we find conditions under which the origin is the unique compact invariant set. Finally, taking the Bloch system in cylindrical coordinates we construct one first integral for some specific restriction imposed on its parameters and, we also establish conditions under which this system has no compact invariant sets.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos