World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
THEME SECTION: New Trends in the Applications of Dynamical System Theory — PapersNo Access

EFFECTS OF QUANTIZATION, DELAY AND INTERNAL RESISTANCES IN DIGITALLY ZAD-CONTROLLED BUCK CONVERTER

    https://doi.org/10.1142/S0218127412502458Cited by:8 (Source: Crossref)

    Zero Average Dynamics (ZAD) strategy has been reported in the last decade as an alternative control technique for power converters, and a lot of work has been devoted to analyze it. From a theoretical point of view, this technique has the advantage that it guarantees fixed switching frequency, low output error and robustness, however, no high correspondence between numerical and experimental results has been obtained. These differences are basically due to model assumptions; in particular, all elements in the circuit were modeled as ideal elements and simulations and conclusions about steady state stability and transitions to chaos have been carried out with this ideal model. Regarding the practical point of view and the digital implementation, we include in this paper internal resistances, quantization effects and 1-period delay to the model. This paper shows in an experimental and numerical way the effects of these elements to the model and their incidence in the results. Now, experimental and numerical analyses fully agree.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos