SYNCHRONIZING CONTINUOUS TIME CHAOTIC SYSTEMS OVER NONDETERMINISTIC NETWORKS WITH PACKET DROPOUTS
Abstract
The problem of control synthesis for master–slave synchronization of continuous time chaotic systems of Lur'e type using sampled feedback control subject to sampling time random fluctuation and data packet dropouts is investigated. New stability and stabilization conditions are proposed based on Linear Matrix Inequalities (LMIs). The idea is to connect two very efficient approaches to deal with delayed systems: the discretized Lyapunov functional for systems with pointwise delay and the convex analysis for systems with time-varying delay. Simulation examples based on synchronizing coupled Chua's circuits are used to illustrate the effectiveness of the proposed methodology.