World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bifurcations and Exact Solutions of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (II)

    https://doi.org/10.1142/S0218127415500455Cited by:5 (Source: Crossref)

    In this paper, we consider a model which is the modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems and investigating the dynamical behavior, we obtain bifurcations of the phase portraits of the system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including smooth solitary wave and periodic wave solutions, periodic cusp wave solutions) under different parameter conditions.

    This research was partially supported by the National Natural Science Foundation of China (11471289, 11171309, 11162020).