World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Simplest Megastable Chaotic Oscillator

    https://doi.org/10.1142/S0218127419501876Cited by:37 (Source: Crossref)

    Recently, chaotic systems with hidden attractors and multistability have been of great interest in the field of chaos and nonlinear dynamics. Two special categories of systems with multistability are systems with extreme multistability and systems with megastability. In this paper, the simplest (yet) megastable chaotic oscillator is designed and introduced. Dynamical properties of this new system are completely investigated through tools like bifurcation diagram, Lyapunov exponents, and basin of attraction. It is shown that between its countable infinite coexisting attractors, only one is self-excited and the rest are hidden.