Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Homoclinic Orbits and Solitary Waves within the Nondissipative Lorenz Model and KdV Equation

    https://doi.org/10.1142/S0218127420502570Cited by:14 (Source: Crossref)

    Recent studies using the classical Lorenz model and generalized Lorenz models present abundant features of both chaotic and oscillatory solutions that may change our view on the nature of the weather as well as climate. In this study, the mathematical universality of solutions in different physical systems is presented. Specifically, the main goal is to reveal mathematical similarities for solutions of homoclinic orbits and solitary waves within a three-dimensional nondissipative Lorenz model (3D-NLM), the Korteweg–de Vries (KdV) equation, and the Nonlinear Schrodinger (NLS) equation. A homoclinic orbit for the X, Y, and Z state variables of the 3D-NLM connects the unstable and stable manifolds of a saddle point. The X and Z solutions for the homoclinic orbit can be expressed in terms of a hyperbolic secant function (sech) and a hyperbolic secant squared function (sech2), respectively. Interestingly, these two solutions have the same mathematical form as solitary solutions for the NLS and KdV equations, respectively. After introducing new independent variables, the same second-order ordinary differential equation (ODE) and solutions for the Z component and the KdV equation were obtained. Additionally, the ODE for the X component has the same form as the NLS for the solitary wave envelope. Finally, how a logistic equation, also known as the Lorenz error growth model, and an improved error growth model can be derived by simplifying the 3D-NLM is also discussed. Future work will compare the solutions of the 3D-NLM and KdV equation in order to understand the different physical role of nonlinearity in their solutions and the solutions of the error growth model and the 3D-NLM, as well as other Lorenz models, to propose an improved error growth model for better representing error growth at linear and nonlinear stages for both oscillatory and nonoscillatory solutions.