World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Chaotic Quadratic Bistable Hyperjerk System with Hidden Attractors and a Wide Range of Sample Entropy: Impulsive Stabilization

    https://doi.org/10.1142/S0218127421502539Cited by:5 (Source: Crossref)

    Hidden attractors generated by the interactions of dynamical variables may have no equilibrium point in their basin of attraction. They have grabbed the attention of mathematicians who investigate strange attractors. Besides, quadratic hyperjerk systems are under the magnifying glass of these mathematicians because of their elegant structures. In this paper, a quadratic hyperjerk system is introduced that can generate chaotic attractors. The dynamical behaviors of the oscillator are investigated by plotting their Lyapunov exponents and bifurcation diagrams. The multistability of the hyperjerk system is investigated using the basin of attraction. It is revealed that the system is bistable when one of its attractors is hidden. Besides, the complexity of the systems’ attractors is investigated using sample entropy as the complexity feature. It is revealed how changing the parameters can affect the complexity of the systems’ time series. In addition, one of the hyperjerk system equilibrium points is stabilized using impulsive control. All real initial conditions become the equilibrium points of the basin of attraction using the stabilizing method.