World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PARAMETRICALLY EXCITED NONLINEAR TWO-DEGREE-OF-FREEDOM SYSTEMS WITH NONSEMISIMPLE ONE-TO-ONE RESONANCE

    https://doi.org/10.1142/S0218127495000545Cited by:5 (Source: Crossref)

    The response of a parametrically excited two-degree-of-freedom system with quadratic and cubic nonlinearities and a nonsemisimple one-to-one internal resonance is investigated. The method of multiple scales is used to derive four first-order differential equations governing the modulation of the amplitudes and phases of the two modes for the cases of fundamental and principal parametric resonances. Bifurcation analysis of the case of fundamental parametric resonance reveals that the quadratic nonlinearities qualitatively change the response of the system. They change the pitchfork bifurcation to a transcritical bifurcation. Cyclic-fold, Hopf bifurcations of the nontrivial constant solutions, and period-doubling sequences leading to chaos are induced by these quadratic terms. The effects of quadratic nonlinearities for the case of principal parametric resonance are discussed.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos