PARAMETRICALLY EXCITED NONLINEAR TWO-DEGREE-OF-FREEDOM SYSTEMS WITH NONSEMISIMPLE ONE-TO-ONE RESONANCE
Abstract
The response of a parametrically excited two-degree-of-freedom system with quadratic and cubic nonlinearities and a nonsemisimple one-to-one internal resonance is investigated. The method of multiple scales is used to derive four first-order differential equations governing the modulation of the amplitudes and phases of the two modes for the cases of fundamental and principal parametric resonances. Bifurcation analysis of the case of fundamental parametric resonance reveals that the quadratic nonlinearities qualitatively change the response of the system. They change the pitchfork bifurcation to a transcritical bifurcation. Cyclic-fold, Hopf bifurcations of the nontrivial constant solutions, and period-doubling sequences leading to chaos are induced by these quadratic terms. The effects of quadratic nonlinearities for the case of principal parametric resonance are discussed.
Remember to check out the Most Cited Articles! |
---|
Check out our Bifurcation & Chaos |