World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Can Neurons Distinguish Chaos from Noise?

    https://doi.org/10.1142/S0218127498000565Cited by:9 (Source: Crossref)

    Recent studies suggesting evidence for determinism in the stochastic activity of the heart and brain have sparked an important scientific debate: Do biological systems exploit chaos or are they merely noisy? Here, we analyze the spike interval statistics of a simple integrate-and-fire model neuron to investigate how a real neuron might process noise and chaos, and possibly differentiate between the two. In some cases, our model neuron readily distinguishes noise from chaos, even discriminating among chaos characterized by different Lyapunov exponents. However, in other cases, the model neuron does not decisively differentiate noise from chaos. In these cases, the spectral content of the input signal may be more significant than its phase space structure, and higher-order spectral characterizations may be necessary to distinguish its response to chaotic or noisy inputs.

    Remember to check out the Most Cited Articles!

    Check out our Bifurcation & Chaos