World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Featured Topic Issue — Best Papers from SEKE 2016; Guest Editor: Jerry GaoNo Access

Using Closed Patterns to Solve the Consensus Clustering Problem

    https://doi.org/10.1142/S021819401640009XCited by:2 (Source: Crossref)

    Clustering is the process of partitioning a dataset into groups based on the similarity between the instances. Many clustering algorithms were proposed, but none of them proved to provide good quality partition in all situations. Consensus clustering aims to enhance the clustering process by combining different partitions obtained from different algorithms to yield a better quality consensus solution. In this work, we propose a new consensus clustering method that uses a pattern mining technique in order to reduce the search space from instance-based into pattern-based space. Instead of finding one solution, our method generates multiple consensus candidates based on varying the number of base clusterings considered. The different solutions are then linked and presented as a tree that gives more insight about the similarities between the instances and the different partitions in the ensemble.