World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY

    https://doi.org/10.1142/S0218196713400080Cited by:3 (Source: Crossref)

    Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bounded factor complexity is periodic, we will show a recurrent non-periodic word with bounded periodicity complexity. Further, we will prove that the periodicity complexity function grows as Θ(log n) in the case of the Fibonacci infinite word and that it grows as Θ(n) in the case of the Thue–Morse word. Finally, we will show examples of infinite recurrent words with arbitrary high periodicity complexity.

    Dedicated to Christophe Reutenauer in occasion of his sixtieth birthday

    AMSC: 68R15