World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MODELING AND ANALYSIS OF AN ANTIPLANE PIEZOELECTRIC CONTACT PROBLEM

    https://doi.org/10.1142/S0218202509003796Cited by:19 (Source: Crossref)

    We study a mathematical model which describes the antiplane shear deformations of a piezoelectric cylinder in frictional contact with a foundation. The process is static, the material behavior is described with a linearly electro-elastic constitutive law, the contact is frictional and the foundation is assumed to be electrically conductive. Both the friction and the electrical conductivity condition on the contact surface are described with subdifferential boundary conditions. We derive a variational formulation of the problem which is in the form of a system of two coupled hemivariational inequalities for the displacement and the electric potential fields, respectively. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proofs are based on an abstract result on operator inclusions in Banach spaces. Finally, we present concrete examples of friction laws and electrical conductivity conditions for which our results are valid.

    AMSC: 74M10, 74F15, 74G25, 49J40