STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES
Abstract
A fluid–structure interaction (FSI) validation study of the Micon 65/13M wind turbine with Sandia CX-100 composite blades is presented. A rotation-free isogeometric shell formulation is used to model the blade structure, while the aerodynamics formulation makes use of the FEM-based ALE-VMS method. The structural mechanics formulation is validated by means of eigenfrequency analysis of the CX-100 blade. For the coupling between the fluid and structural mechanics domains, a nonmatching discretization approach is adopted. The simulations are done at realistic wind conditions and rotor speeds. The rotor-tower interaction that influences the aerodynamic torque is captured. The computed aerodynamic torque generated by the Micon 65/13M wind turbine compares well with that obtained from on-land experimental tests.
Remember to check out the Most Cited Articles! |
---|
View our Mathematical Modelling books
|