World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A multiscale view of nonlinear diffusion in biology: From cells to tissues

    https://doi.org/10.1142/S0218202519400062Cited by:46 (Source: Crossref)
    This article is part of the issue:

    This paper presents a review on the mathematical tools for the derivation of macroscopic models in biology from the underlying description at the scale of cells as it is delivered by a kinetic theory model. The survey is followed by an overview of research perspectives. The derivation is inspired by the Hilbert’s method, known in classic kinetic theory, which is here applied to a broad class of kinetic equations modeling multicellular dynamics. The main difference between this class of equations with respect to the classical kinetic theory consists in the modeling of cell interactions which is developed by theoretical tools of stochastic game theory rather than by laws of classical mechanics. The survey is focused on the study of nonlinear diffusion and source terms.

    Communicated by Nicola Bellomo and Franco Brezzi

    AMSC: 82−XX, 34C28, 37Fxx