World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model

    https://doi.org/10.1142/S0218202517500099Cited by:22 (Source: Crossref)

    In this paper, we develop a second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin (DG) scheme for the Kerr–Debye model. By using the approach first introduced by Zhang and Shu in [Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal.42 (2004) 641–666.] with an energy estimate and Taylor expansion, the asymptotic-preserving property of the semi-discrete DG methods is proved rigorously. In addition, we propose a class of unconditional positivity-preserving implicit–explicit (IMEX) Runge–Kutta methods for the system of ordinary differential equations arising from the semi-discretization of the Kerr–Debye model. The new IMEX Runge–Kutta methods are based on the modification of the strong-stability-preserving (SSP) implicit Runge–Kutta method and have second-order accuracy. The numerical results validate our analysis.

    Communicated by F. Brezzi

    AMSC: 65M60, 65M12
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!