World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Machine Learning Model to Predict the Staying Time of International Migrants

    https://doi.org/10.1142/S0218213021500020Cited by:33 (Source: Crossref)

    In this paper, a novel machine learning model is proposed to predict the staying time of international migrants. The competitive machine learning approaches which can be used to predict the staying time of international migrants suffer from hyper-attributes tuning and over-fitting issues. Therefore, a particle swarm optimization (PSO) based support vector machine (SVM) model is proposed to predict the staying time of international migrants. Extensive experiments are performed by considering the international migrants dataset to predict the staying time of international migrants. Experimental results illustrate that the proposed approach outperforms the existing machine learning approaches in terms of f-measure, accuracy, specificity, and sensitivity.