World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Music Emotion Intensity Estimation Using Transfer Ordinal Label Learning Under Heterogeneous Scenes

    https://doi.org/10.1142/S0218213024400049Cited by:0 (Source: Crossref)
    This article is part of the issue:

    Music emotion recognition plays an important role in many applications such as music material library construction and music recommendation system. The current music emotion recognition mainly focuses on discrete emotions or continuous emotions under single scene. However, on the one hand, intensity is one of important aspects of emotion, which can be represented as emotion rank or ordinal class. On the other hand, there may be not enough music emotion data in training set, which needs to transfer music emotion recognition model learnt from the music data in a source domain. The distribution of existing music data in target domain may differ from target music dataset. In order to overcome these two issues, this paper proposes to utilize transfer ordinal label learning (TOLL) to estimate music emotion. Compared with the previous works, TOLL-based music emotion intensity estimation implements music intensity estimation through transferring the knowledge in the existing source domain to unknown target domain. The experiments on several datasets show that TOLL can achieve promising results for emotion intensity estimation in single scene or across different scenes.