World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

REGULAR PROJECTIONS OF GRAPHS WITH AT MOST THREE DOUBLE POINTS

    https://doi.org/10.1142/S0218216510008261Cited by:0 (Source: Crossref)

    A generic immersion of a planar graph into the 2-space is said to be knotted if there does not exist a trivial embedding of the graph into the 3-space obtained by lifting the immersion with respect to the natural projection from the 3-space to the 2-space. In this paper, we show that if a generic immersion of a planar graph is knotted then the number of double points of the immersion is more than or equal to three. To prove this, we also show that an embedding of a graph obtained from a generic immersion of the graph (does not need to be planar) with at most three double points is totally free if it contains neither a Hopf link nor a trefoil knot.

    AMSC: 57M15, 57M25