World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE TENEVA GAME

    https://doi.org/10.1142/S0218216512501258Cited by:10 (Source: Crossref)

    For each prime p > 7 we obtain the expression for an upper bound on the minimum number of colors needed to non-trivially color T(2, p), the torus knot of type (2, p), modulo p. This expression is t + 2l -1 where t and l are extracted from the prime p. It is obtained from iterating the so-called Teneva transformations which we introduced in a previous article. With the aid of our estimate we show that the ratio "number of colors needed vs. number of colors available" tends to decrease with increasing modulus p. For instance as of prime 331, the number of colors needed is already one tenth of the number of colors available. Furthermore, we prove that 5 is the minimum number of colors needed to non-trivially color T(2, 11) modulo 11. Finally, as a preview of our future work, we prove that 5 is the minimum number of colors modulo 11 for two rational knots with determinant 11.

    AMSC: 57M27