World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A LOWER BOUND FOR THE NUMBER OF FORBIDDEN MOVES TO UNKNOT A LONG VIRTUAL KNOT

    https://doi.org/10.1142/S0218216513500247Cited by:1 (Source: Crossref)

    Nelson and Kanenobu showed that forbidden moves unknot any virtual knot. Similarly a long virtual knot can be unknotted by a finite sequence of forbidden moves. Goussarov, Polyak and Viro introduced finite type invariants of virtual knots and long virtual knots and gave combinatorial representations of finite type invariants. We introduce Fn-moves which generalize the forbidden moves. Assume that two long virtual knots K and K′ are related by a finite sequence of Fn-moves. We show that the values of the finite type invariants of degree 2 of K and K′ are congruent modulo n and give a lower bound for the number of Fn-moves needed to transform K to K′.

    AMSC: 57M25, 57M27