World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special issue: 2014 KOOK-TAPU Workshop on Knot Theory and Related TopicsNo Access

On unknotting operations of rotation type

    https://doi.org/10.1142/S021821651540009XCited by:0 (Source: Crossref)

    An unknotting operation is a local move on a knot diagram such that any knot diagram can be transformed into a diagram of the unknot by a finite sequence of the operations and Reidemeister moves. In this paper, we introduce a new local move H(T) on a knot diagram which is obtained by the rotation of a tangle diagram T and study their properties. As an application, we prove that the H(T)-move is an unknotting operation for any descending tangle diagram T.

    AMSC: 57M25, 57M27