World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Pulsar–black hole binaries as a window on quantum gravity

    https://doi.org/10.1142/S0218271817430040Cited by:3 (Source: Crossref)

    Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR–BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR–BH binaries are very promising. We argue that PSR–BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.

    This essay received an Honorable Mention in the 2017 Essay Competition of the Gravity Research Foundation.

    PACS: 97.80.−d, 04.70.Dy, 97.60.Gb
    You currently do not have access to the full text article.

    Recommend the journal to your library today!