World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Black holes and their horizons in semiclassical and modified theories of gravity

    https://doi.org/10.1142/S0218271822300154Cited by:18 (Source: Crossref)

    For distant observers, black holes are trapped spacetime domains bounded by apparent horizons. We review properties of the near-horizon geometry emphasizing the consequences of two common implicit assumptions of semiclassical physics. The first is a consequence of the cosmic censorship conjecture, namely, that curvature scalars are finite at apparent horizons. The second is that horizons form in finite asymptotic time (i.e. according to distant observers), a property implicitly assumed in conventional descriptions of black hole formation and evaporation. Taking these as the only requirements within the semiclassical framework, we find that in spherical symmetry only two classes of dynamic solutions are admissible, both describing evaporating black holes and expanding white holes. We review their properties and present the implications. The null energy condition is violated in the vicinity of the outer horizon and satisfied in the vicinity of the inner apparent/anti-trapping horizon. Apparent and anti-trapping horizons are timelike surfaces of intermediately singular behavior, which manifests itself in negative energy density firewalls. These and other properties are also present in axially symmetric solutions. Different generalizations of surface gravity to dynamic spacetimes are discordant and do not match the semiclassical results. We conclude by discussing signatures of these models and implications for the identification of observed ultra-compact objects.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!