Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0218271824500299Cited by:0 (Source: Crossref)

An explanation of the nature of dark energy has been treated in extra dimensions within the scheme of string theory. One of the most successful models is inspired by the Dvali–Gabadadze–Porrati (DGP) model, in which the universe is a 4-dimensional brane embedded in a 5-dimensional Minkowski spacetime. In this landscape, the study of the evolution of the normal branch has led us to different kinds of dark energy, where the most simple case is the cosmological constant Λ. Moreover, other viable cosmological solutions are related to agegraphic dark energy, which allows a late cosmic acceleration within an interacting mechanism. To explore the viability of these solutions and possible gravitational leakage, in this paper, we present constraints on such models using recent standard sirens forecasting in addition to local observables such as Pantheon (SNIa), H(z) measurements, baryonic acoustic oscillations (BAO). Our results show that the value associated with the species of quantum fields n in these models is strongly restricted for supernovae observations to n=20, and for GW standard sirens mock data prefers a value of n=1.

You currently do not have access to the full text article.

Recommend the journal to your library today!