World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TOTAL ENERGY LOSSES DUE TO THE RADIATION IN AN ACOUSTICALLY BASED UNDULATOR: THE UNDULATOR AND THE CHANNELING RADIATION INCLUDED

    https://doi.org/10.1142/S0218301300000064Cited by:23 (Source: Crossref)

    This paper is devoted to the investigation of the radiation energy losses of an ultra-relativistic charged particle channeling along a crystal plane which is periodically bent by a transverse acoustic wave. In such a system there are two essential mechanisms leading to the photon emission. The first one is the ordinary channeling radiation. This radiation is generated as a result of the transverse oscillatory motion of the particle in the channel. The second one is the acoustically induced radiation. This radiation is emitted because of the periodic bending of the particle's trajectory created by the acoustic wave. The general formalism described in our work is applicable for the calculation of the total radiative losses accounting for the contributions of both radiation mechanisms. We analyze the relative importance of the two mechanisms at various amplitudes and lengths of the acoustic wave and the energy of the projectile particle. We establish the ranges of projectile particle energies, in which total energy loss is small for the LiH, C, Si, Ge, Fe and W crystals. This result is important for the determination of the projectile particle energy region, in which acoustically induced radiation of the undulator type and also the stimulated photon emission can be effectively generated. The latter effects have been described in our previous works.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!