World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SHELL CORRECTION ENERGY AND THE ENTRANCE CHANNEL EFFECT ON THE FORMATION OF SUPERHEAVY NUCLEI

    https://doi.org/10.1142/S021830130801177XCited by:2 (Source: Crossref)

    Based on the improved isospin dependent molecular dynamics model in which the shell correction energy of the system is calculated by using deformed two-center shell model and the surface energy of the system is improved by introducing a switch function that combines the surface energies of projectile and target with the one of the compound nucleus. The effects of the shell correction energy on synthesis of superheavy nuclei and the fusion cross sections in asymmetric and nearly symmetric reaction systems leading to the same compound nuclei 62Zn, 76Kr, and 202Pb are studied. The entrance channel mass asymmetry dependence of compound nucleus formation is found by analyzing the shell correction energies, Coulomb barriers and fusion cross sections. The experimental data are described quantitatively by the present model. It is found that the compound nucleus formation is favorable for the systems with larger mass asymmetry.

    Work supported by the Natural Science Foundation of China (grant Nos. 10575012 and 10435020), the Science Foundation of Beijing City, and the Science Foundation of Beijing Normal University.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!