World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Gossypol Reduces Metastasis and Epithelial-Mesenchymal Transition by Targeting Protease in Human Cervical Cancer

    https://doi.org/10.1142/S0192415X21500105Cited by:19 (Source: Crossref)

    Metastasis is the most prevalent cause of cancer-associated deaths amongst patients with cervical cancer. Epithelial–mesenchymal transition (EMT) is essential for carcinogenesis, and it confers metastatic properties to cancer cells. Gossypol is a natural polyphenolic compound with anti-inflammation, anti-oxidant, and anticancer activities. In this study, we investigated the antimetastatic and antitumour effects of gossypol on human cervical cancer cells (HeLa and SiHa cells). Gossypol exerted a strong inhibition effect on the migration and invasion of human cervical cancer cells. It reduced the focal adhesion kinase (FAK) pathway-mediated expression of matrix metalloproteinase-2 and urokinase-type plasminogen activator, subsequently inhibiting the invasion of SiHa cells. In addition, gossypol reversed EMT induced by transforming growth factor beta 1 (TGF-β1) and up-regulated epithelial markers, such as E-cadherin but significantly suppressed Ras homolog family member (Rho)A, RhoB, and p-Samd3. The tail vein injection model showed that gossypol treatment via oral gavage reduced lung metastasis. Gossypol also decreased tumour growth in vivo in the nude mouse xenograft model. All these findings suggest that gossypol suppressed the invasion and migration of human cervical cancer cells by targeting the FAK signaling pathway and reversing TGF-β1-induced EMT. Hence, gossypol warrants further attention for basic mechanistic studies and drug development.

    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!