Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Spectroscopy of light baryons in a semi-relativistic constituent three-quark model

    https://doi.org/10.1142/S0218301317500422Cited by:10 (Source: Crossref)

    We studied the non-strange baryon spectroscopy by presenting a simple semi-relativistic constituent three-quark model. Assuming a separation of the interaction potential in terms of a leading SU(6) symmetric component and a subleading SU(6) breaking term, we treated the baryons as a spin-independent three-quark system and presented the analytical solution for the problem. Using perturbative and approximative approaches in order to deal with problematic linear confining term in SU(6)-invariant interaction, we obtained analytical formulas for energy levels and the hyperradial wave functions and the average energy values of the nonstrange resonances are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the perturbative spin- and isospin-dependent terms. The resulting description of the baryon spectrum for both approaches are given and compared with the experimental spectrum.

    PACS: 12.39.Ki, 14.20.Gk, 03.65.Ge, 12.40.Yx
    You currently do not have access to the full text article.

    Recommend the journal to your library today!