Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MATHEMATICAL MODELING OF IN-VIVO TUMOR-IMMUNE INTERACTIONS FOR THE CANCER IMMUNOTHERAPY USING MATURED DENDRITIC CELLS

    https://doi.org/10.1142/S0218339018500080Cited by:13 (Source: Crossref)

    To develop an anticancer drug, the mathematical models are nowadays indispensable because of complex immunological mechanisms defying with high experimentation costs as well as a large number of parameters. Based on immunological theories and vision of experimentation data, a simple and sufficient compartment model is designed that can accurately interpret and predict the effects of dendritic cell (DC)-based immunotherapy in accordance with experimentation data. The model includes effector cells, regulatory T cells, helper T cells, and DCs. A new key feature is the inclusion of immunotherapy with DCs matured with different materials. All the parameters of the model have been optimally obtained by fitting the experimental data using genetic algorithm. The proposed model has been used to predict a near-optimal pattern that minimizes tumor size after vaccination. This pattern has been validated by carrying out the associated in-vivo experimentation. The model recommends maturation materials and doses that activate a small amount of Treg in the early days and a large Th1/Treg ratio in the next days. The performance of the model compared with the previous study was shown to be superior, both qualitatively and quantitatively.