World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An efficient numerical simulation and mathematical modeling for the prevention of tuberculosis

    https://doi.org/10.1142/S1793524522500152Cited by:9 (Source: Crossref)

    The main purpose of this research is to use a fractional-mathematical model including Atangana–Baleanu derivatives to explore the clinical associations and dynamical behavior of the tuberculosis. Herein, we used a lately introduced fractional operator having Mittag-Leffler kernel. The existence and inimitability problems to the relevant model were examined through the fixed-point theory. To verify the significance of the arbitrary fractional-order derivative, numerical outcomes were explored from the biological and mathematical viewpoints using the values of model parameters. The graphical simulations show the comparison of the predictor–corrector method (PCM) and Caputo method (CM) for different fractional orders and the results indicated the significant preference of PCM over CM.

    AMSC: 34A08, 34C60, 92C60, 92D30

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!