World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BISTABILITY AND TRISTABILITY IN A PREDATOR–PREY MODEL WITH STRONG ALLEE EFFECT IN PREY

    https://doi.org/10.1142/S0218339023500110Cited by:6 (Source: Crossref)

    Understanding the Allee effect on endangered species is crucial for ecological conservation and management as it highly affects the extinction of a population. Due to several ecological mechanisms accounting for the Allee effect, it is necessary to study the dynamics of a predator–prey model incorporating this phenomenon. In 1999, Cosner et al. [Effects of spatial grouping on the functional response of predators, Theor Popul Biol 56:65–75, 1999] derived a new kind of functional response by considering spatially grouped predators. This paper deals with the dynamical behavior of a predator–prey system with functional response proposed by Cosner et al., and the growth of the prey population suffers a strong Allee effect. We find that the system undergoes various types of bifurcations such as Hopf bifurcation, saddle-node bifurcation, and Bogdanov–Takens bifurcation. We also observe that the model exhibits bistability and two different types of tristability phenomena. Our findings reveal that for such a kind of multistability in ecological systems, the initial population size plays a crucial role and also impacts the system’s state in the long term.