COMPLEXITY OF THE FIBONACCI SNOWFLAKE
Abstract
The object under study is a particular closed and simple curve on the square lattice ℤ2 related with the Fibonacci sequence Fn. It belongs to a class of curves whose length is 4F3n+1, and whose interiors tile the plane by translation. The limit object, when conveniently normalized, is a fractal line for which we compute first the fractal dimension, and then give a complexity measure.