World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

AN USER INTENTION MINING MODEL BASED ON FRACTAL TIME SERIES PATTERN

    https://doi.org/10.1142/S0218348X20400174Cited by:24 (Source: Crossref)
    This article is part of the issue:

    Users use the network more and more frequently, and more and more data is published on the network. Therefore, how to find, organize, and use the useful information behind these massive data through effective means, and analyze user intentions is a huge challenge. There are many time series problems in user intentions. Time series have complex characteristics such as randomness and multi-scale variability. Effectively identifying the inherent laws and objective phenomena contained in time series is the purpose of analyzing and processing time series data. Fractal theory provides a new way to analyze time series, and obtains the characteristics and rules of time series from a new perspective. Therefore, this paper introduces the fractal theory to analyze the time series problem, and proposes an improved G-P algorithm to realize the prediction and mining of user intentions. First, the method of array storage instead of repeated calculations is used to improve the method of saturated correlation dimension. Second, the Hurst exponent of the time series is obtained by the variable scale range analysis method. Finally, a fractal model for predicting user intent in short time series is established using the accumulation and transformation method. The experimental results show that the use of fractal theory can effectively describe the relevant characteristics of time series, the development trend of user intentions can be mined from big data, and the prediction model for short time series can be established to achieve information mining of user intentions.