World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE NUMERICAL TREATMENT OF NONLINEAR FRACTAL–FRACTIONAL 2D EMDEN–FOWLER EQUATION UTILIZING 2D CHELYSHKOV POLYNOMIALS

    https://doi.org/10.1142/S0218348X20400423Cited by:17 (Source: Crossref)
    This article is part of the issue:

    This paper develops an effective semi-discrete method based on the 2D Chelyshkov polynomials (CPs) to provide an approximate solution of the fractal–fractional nonlinear Emden–Fowler equation. In this model, the fractal–fractional derivative in the concept of Atangana–Riemann–Liouville is considered. The proposed algorithm first discretizes the fractal–fractional differentiation by using the finite difference formula in the time direction. Then, it simplifies the original equation to the recurrent equations by expanding the unknown solution in terms of the 2D CPs and using the θ-weighted finite difference scheme. The differentiation operational matrices and the collocation method play an important role to obtaining a linear system of algebraic equations. Last, solving the obtained system provides an approximate solution in each time step. The validity of the formulated method is investigated through a sufficient number of test problems.