World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DYNAMIC NONLINEAR EXPRESSION RECOGNITION TECHNOLOGY USING NEURAL NETWORK AND ATTENTION MECHANISM

    https://doi.org/10.1142/S0218348X22400977Cited by:2 (Source: Crossref)
    This article is part of the issue:

    The purpose is to apply deep learning to facial expression recognition and improve the efficiency of facial expression recognition in real scenes: first, convolutional neural network (CNN) theoretical model is proposed. On this basis, a new CNN model is proposed, which has six learning layers, including three convolutional layers and three fully connected layers. Then, based on the shortcomings of the model, weight decay and dropout optimization methods are proposed. Moreover, the attention module is designed based on the theory of attention mechanism. After each convolutional layer, a hybrid attention module (channel domain attention and spatial domain attention) is added. Finally, the frame error rate (FER) 2013 dataset and Cohn–Kanade (CK)+ dataset are used to test and compare the performance of the model. The results show that after 50Epoch, the accuracy rate of the original model fluctuates greatly in the process of convergence; however, after attention mechanism is added, the fluctuation of the accuracy of the model is obviously reduced. In the CK+ dataset, the accuracy of each model is maintained at about 95%, while the accuracy of FER2013 dataset is about 71%. After attention mechanism is added, the recognition rate of dynamic nonlinear expression is higher than that of basic model. The recognition rate of the original model and the optimized model with attention mechanism for the dynamic nonlinear expression with occlusion decreases in varying degrees, but the reduction of the recognition rate of the latter is alleviated.