World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue Section on Fractals in Advanced Textiles, Intelligent Wearables, and Fashionable ClothingOpen Access

PREDICTION OF THE VERTICAL PERMEABILITY COEFFICIENT BASED ON FRACTAL THEORY FOR WOVEN SLIT-FILM GEOTEXTILES

    https://doi.org/10.1142/S0218348X22401156Cited by:1 (Source: Crossref)

    The coefficient of vertical permeability is a common filter design criterion for woven slit-film geotextiles. According to the pipe flow theory, a permeability coefficient model has been proposed for predicting the permeability coefficient of woven geotextiles, in which the pore characteristics were described by the Sierpiński carpet fractal theory. The verification of models is performed in 12 woven geotextiles of two types using a digital image method and a vertical water permeability test of the geotextile. The influence of the pore characteristics on the permeability coefficient is further explored using univariate and multivariate analyses. The results show that the porosity model can accurately predict the total percent pore area (POA) and the POA distribution of the woven geotextiles, and the permeability model can accurately predict the permeability coefficient of the geotextiles. The permeability coefficient of geotextiles decreases with the pore area fractal dimension and the minimum pore size under the action of a single factor. The permeability coefficient increases as the maximum pore size increases. POA and maximum pore size are the most significant independent variables affecting the permeability coefficients of geotextile under the action of multifactor.