World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUMERICAL INVESTIGATION OF THE NONLINEAR FRACTIONAL OSTROVSKY EQUATION

    https://doi.org/10.1142/S0218348X22401429Cited by:27 (Source: Crossref)
    This article is part of the issue:

    This research paper investigates the numerical solutions of the nonlinear fractional Ostrovsky equation through five recent numerical schemes (Adomian decomposition (AD), El Kalla (EK), Cubic B-Spline (CBS), extended Cubic B-Spline (ECBS), exponential Cubic B-Spline (ExCBS) schemes). We investigate the obtained computational solutions via the generalized Jacobi elliptical functional (JEF) and modified Khater (MK) methods. This model is considered as a mathematical modification model of the Korteweg–de Vries (KdV) equation with respect to the effects of background rotation. The solitary solutions of the well-known mathematical model (KdV equation) usually decay and are replaced by radiating inertia gravity waves. The obtained solitary solutions show the localized wave packet as a persistent and dominant feature. The accuracy of the obtained numerical solutions is investigated by calculating the absolute error between the exact and numerical solutions. Many sketches are given to illustrate the matching between the exact and numerical solutions.

    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "