World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NEW PROPERTIES OF THE FRACTAL BOUSSINESQ–KADOMTSEV–PETVIASHVILI-LIKE EQUATION WITH UNSMOOTH BOUNDARIES

    https://doi.org/10.1142/S0218348X22501754Cited by:2 (Source: Crossref)

    The Boussinesq–Kadomtsev–Petviashvili-like model is a famous wave equation which is used to describe the shallow water waves in ocean beaches and lakes. When shallow water waves propagate in microgravity or with unsmooth boundaries, the Boussinesq–Kadomtsev–Petviashvili-like model is modified into its fractal model by the local fractional derivative (LFD). In this paper, we mainly study the fractal Boussinesq–Kadomtsev–Petviashvili-like model (FBKPLM) based on the LFD on Cantor sets. Two efficient and reliable mathematical approaches are successfully implemented to obtain the different types of fractal traveling wave solutions of the FBKPLM, which are fractal variational method (FVM) and fractal Yang wave method (FYWM). Finally, some three-dimensional (3D) simulation graphs are employed to elaborate the properties of the fractal traveling wave solutions.