Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTELLIGENT COMPUTING PARADIGM FOR SECOND-GRADE FLUID IN A ROTATING FRAME IN A FRACTAL POROUS MEDIUM

    https://doi.org/10.1142/S0218348X23401758Cited by:5 (Source: Crossref)
    This article is part of the issue:

    The numerical methods such as the artificial neural networks with greater probability and nonlinear configurations are more suitable for estimation and modeling of the problem parameters. The numerical methods are easy to use in applications as these methods do not require costly and time-consuming tests like the experimental study. In this study, we use the Levenberg–Marquardt-based backpropagation Process (LMP) to create a computing paradigm that makes use of the strength of artificial neural networks (ANN), known as (ANN-LMP). Here we use the ANN-LMP to obtain the solution of the second-grade fluid in a rotating frame in a porous material with the impact of a transverse magnetic field. The 1000 data set points in the interval [0,1] are used for the network training to determine the effect of various physical parameters of the flow problem under consideration. The experiment is executed of six scenarios with different physical paramaters. ANN-LMP is used for evaluating the mean square errors (MSE), training (TR), validation (VL), testing (TT), performance (PF) and fitting (FT) of the data. The problem has been verified by error histograms (EH) and regression (RG) measurements, which show high consistency with observed solutions with accuracy ranging from E-5 to E-8. Characteristics of various concerned parameters on the velocity and temperature profiles are studied.